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UDC 539.3 

ON THE THEORY OF VISCOEIASTICITY OF STRUCTURALLY INHOMOGENEOUS MEDIA*'**! 

B.E. POBEDRIA 

The quasi-static problem for the linear theory of viscoelasticity for structurally 
inhomogeneous media is stated for the caseofdisplacements andstresses. A method of 
solving such a problem for media with perodic structure is given. "Canonical" visco- 
elastic operators are introduced for composites in which the reinfoxcementandbinder 
possess viscoelastic properties , and experiments for determining the kernels CQK- 
responding to these operators are described. A method of solving problems for such 
composities that may be used to determine microscopic displacements and stresses is 
described. 

1. We consider a linear nonhomogeneous viscoelastic medium for which the relation be- 
tween the stresses Ull and deformations eiJ has the form /l/ 

(1.1) 

The tensor of fourth rank CJrr (r, t,z) is called the tensor of the relaxation kernels and 
in the case of a deformable solid, may be represented in the form 

C,#l (r.6 7) = C;jrl (s) 6 (t- 7) - C:kl (r, t, 2) (I.21 

where6fti is a delta function and &.,(x,&r) a regular component of the relaxation kernel 
tensor /2/. If conditions (1.21 are satisfied, the determining relations il.11 may be solved 
for the deformations thus: 

where an additive component 
form of a delta function 

may be extracted from the creep kernel tensor Jrtzt(x,b,z) rn the 

(1.4) 

Here the regular components of the relaxation and creep kerne3. tensors are related as 
follows: 

The number of independent components of the relaxation and creep kernel. tensors depends 
on the type of anisotropy of in question material /I./. An explicit relation between these 

kernels and the coordinates z for no~~~eneous viscoelastic materials may be due to the 

strucutre of the material, the dependence between its properties end a nonuniform temperature 

*Prikl.Matem.Nekhan., Vo1.47,No.l,pp.133-139‘1983 
**) Report readtothe Fifth All-Union Conference on Theoretical and Applied Mechanics, Alma- 
Ata, May 29, 1981. 
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field, and also the properties of nonuniform aging (*). 
If the material is nonaging, the relaxation and creep kernels will be of different types 

and equations (1.1) and (1.3) may be written in the form /2/ 

(1.5) 

If the material is isotropic, the relaxation kernel tensor may be represented in the 

where r(x,T,,r) is the shear relaxation kernel and I',(z,t,r) the bulk relaxation kernel. An- 
alogously, we may represent the tensors Jtjkr (z,i,z), R~lrr (s, t), and nirkl (21 t). 

If the relaxation and creep kernel tensors are piecewise-braking functions of the coord- 
inates x, the material is called a linear viscoelastic composite. A two-component composite 

in which one of the components (the reinforcement) is an isotropic, elastic material and the 
other component (the binder) is an isotropic voscoelastic material with nonrelaxing volume 
/I/ is called a simple viscoelastic composite. 

Foranon-aging binder; the relation between the stresses and deformations has the form 

~31 t 3K,o'e,j, eiJ E + n”s+ a=KJ3 

efj = ezJ - 1/&j% s&f =‘atj - a&r, e = ekkt a = ‘tsakk 

Here Kc is the modulus of compression of the binder and o-and s'are two reciprocal integral 
operators 11.5) that characterise the kernels o(t)and n(t), respectively. Consequently, the 
mechanical properties of a non-aging simple viscoelastic composite is described by the relaxa- 
tion kernel o(t) and elastic constants K, and E,, which is Young's modulus of the reinforce- 
ment, and %, which is Poisson's coefficient of the reinforcement. If 0 (1) = U = const, 
the composite is elastic. 

2. Let us consider the quasi-static problem for a nonhomogeneous viscoelastic medium 
(problem Al which consists in solving three equations for the displacement vector rr (weassume 
#at there are no body forces) under the assumption that boundary conditions are satisfied, 
for example, a mixed type of boundary conditions in which displacements IL" are specified on 
the part Z, of the boundary of the body bounding the volume VO, and loads S" are specified 
on the rest of the boundary 2,: 

If there is no regular part in the relaxation kernels (1.21, the medium will be elastic. 
We will refer to the problem (2.11, (2.2) for an elastic medium as problem A,. Suppose we 
have found a solution of problem A, under the condition that displacements are specified on 
the entire boundary X, i.e., in (2.2) x:,=X,Z, = 0, further ai0 are linear functions of 
the coordinates. 
the stresses, 

We let alla(s) denote the deformation of the resulting solution, and of,"(x) 

example, 
then average them with respect to the volume, obtaining (e,,'), <aotlO), where, for 

(2.3) 

The quantities hilt! form an effective elasticity modulus tensor. Solving problem A 
with the above boundary conditions, we similarly determine the effective relaxation kernel 

*) N.Kh. Arutiunian, Theory of creep of nonhomogeneo~ly aging bodies. Offprint of the In- 
stitute of Problems of Mechanics, Akad. Nauk USSR, Moscow, No.170, 1981. 
**) In RuSSian original the letter a is omitted-Ed. 
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tensor hfjh~ (t, 2) . 
If only the loads 

%& IS = si* <2.4) 

are given on the boundary, the problemissometimes more convenient to formulate rn terms of 
stresses. For this purpose, we consider at tensor of third rank sYmmetric in its first 
two subscripts: 

E ijk = Qf,k + 6ki W&,j - ejd + 8h.j (‘i$, , - eil,d + 

511 (Srl,I - e k) f Mf td s,k + Mj (q) 6tk - t&k (q) 
(2.51 

whereM(q)is some arbitrary linear vector, that is, an operator over the vector q that vanish- 
es on the boundary 

91 tz: = 0; 91 = $k,k (2.6) 

The quasi-Static problem for a nonhomogeneous viscoelastic medium (problem B) consists 
in solving the six equations 

EIjA..k (a) = 0 (2.7) 

for the six independent components of the tensor UQ (in which the tensor Eita of (2.51 1s 
expressed in ternui of stresses by means of formula (1.3)) under the six boundary conditions 
(2.4) and (2.6) /l/. If there is no ?CegUhtr part in the creep kernels (1.4), the medium will 
be elastic. We will refer totheproblem (2.7), (2.4), (2.6) for an elastic medium as problem 

By. If its solution is averaged over the volume in accordance with the first formula wf 
(2.3) (assuming the loads So (2.4) are constant), we may then write 

<aif'> = ff:jk;kl <@,I”> 

where the quantities H"& form what is known as the effective compliance tenSor. A defini- 
tion of the effective creep kernel tensor Hiikl (t,T) may be given in an obvious way. 

We may prove that the tensors hTjkl ad &jkl (that is, hijkl (t, Z) as well) and Ht,kl (t, T) 

are reciprocal. Expressions for these tensors have been found for some media /4- 7/. 

3. The theory based on replacing the elasticity modulus tensor C&,(x) (the relaxation 
kernel tensor Cijgt (z,t,z) ) in problem A, (or A) by the effective quantities hyjkl (htlrl (t, T)) is 
called effective modulus theory. In this theory, the problem (2.1), (2.2) for a nonhomogen- 
eous viscoelastic medium (isotropic or anisotropic) is replaced by the problem for a homogene- 
ous anisotropic viscoelastic medium: 

where u is some mean displacement field /4,5,8,9/. 
In many cases, for example when estimating the strength of a composite material, it is 

important to know not only the average diffuse displacement and stress field, but also the 
stresses within each component forming the composite (what are known as microscopic stresses), 

To determine the microscopic deformations and microscopic stresses in COmpoSiteS with a 
periodic structure, a method (/I/, p.269) basedon the notion of an average of differential 
equations with periodic coefficients /lo./ is highly recommended. By means of this method, 
certain boundary-value problems of the theory of elasticity may be solved exactly /llf. In- 
terestingly, even the first approximation, i.e., the approximation based on the effective mod- 
ulus theory with small corrections,in many cases describes in a sufficiently complete manner 
the nature of the deformation of the nonhomogeneous medium. 

In this case, the solution of problem A, i.e., problem (2.1), (2.2),is found approximat- 

ely in the form 

U) (s% Sf = OZ (S) + aiV;,k @f~j, k b), 5 = da (3.3) 

where CL is a small parameter equal to the ratio of the period of the structure and the 

characteristic dimension of the entire nonhomogeneous body: The quantities N,,, (E, t, T) (local 
relaxation kernels) are periodic functions of the fast coefficients E and are determined bY 
solving the system of differential equations 

vj [C&C ($1 vi~*nkl= - VjCip7m{&t~ z) 13.4) 

where Vj represents the symbol of derivative with respect to iha Coordinates E. To Uniquely 
determine the functions N,it,(&t,z), we must set 

<Nzjk (5, t, ?)> = o (3.5) 



The effective relaxation kernel tensor is found using the formulas /l/ 

hijm(t, r)= <&&(E)V&,,k + C~jmn(E~f~ r)> (3.6) 

Note that the effective relaxation kernel tensor must also be found in the effective mod- 
ulus theory (3.1), (3.2). In this case, there is a method of finding these kernels (eqn.(3.6)), 
whereby we first determine the local relaxation kernels (eqns. (3.41, (3.5)) and in (3.3) add 
the second term which takes into account the microscopic stresses to the first term, which is 
the solution in the effective modulus theory. Note, too, that the boundary conditions in this 
approximation are satisfied approximately (cf. (3.2)), as in the effective modulus theory. In 
the case of a rectilinear boundary, there existtechniques for exactly satisfying the boundary 
conditions /ll, 12/. The effective relaxation and creep kernels as well as the local relaxa- 
tion kernels for a laminar composite have been described explicitly /l/. For composites with 
more complex strucute, these quantities may be determined only approximately, and it is best 
to use empirical analytic expressions(*). 

4. There are no general-purpose effective solution methods for the problem (3.11, (3.2) 
of the theory of viscoelasticity for an anisotropic medium. If the composite is a simple one, 
the quantities h,,,,,(t,r) depend only on the single operator o-, so that the numerical real- 
ization method for the elastic solution /l/ may be successfully applied; this method is a 
generalization of the approximation method developed by A.A. Il'iushin /2/. However, comp- 
osites in which viscoelastic properties are exhibited not only by the binder, but also by the 
reinforcement, have recently come into widespread use in industry. For such materials, the 
above method is no longer applicable, since a rational function of two arguments (viscoelastic 
operators) may not be expanded into simple fractions. Below we describe a technique that may 
be used to solve the problem (3-l), (3.2) for two-component composites. Suppose K, and K, 
are the compression moduli of the first and second component, w(t) and e(t) the shear relaxa- 
tion kernels of the first and second component, while n%(t) and n,(t) the creep kernels cor- 
responding to them. 

We let 
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1 
ge- = *+fjol- 1 *'s-E * 

I+@?- 
(4.1) 

and introduce certain 'canonical' operators 

B- (B,a)=:gg + a*'g- (4.2) 

B,’ (a) s nl- + anz- = 1:~ fiB’ (f3, a) 

A,‘(a) E 01- + CL@” 

where a and p are certain numbers. Let us also consider the operators A” @,a), 
B,- (a). which are reciprocals of the corresponding operators (4.2). 

A,’ (a) and 

Then for the case of laminar composites we may write out an expression for the relaxation 
operators in terms of the canonical operators: 

h&, = h& = 8/4A” (2, a/x) [B’ (2, a) - 1/sy-l]2 - 

‘/F (2, ax) + Sl~A,” W + “/a (1 + ax) 
h& = J*-~B- (2, a/x), G22 = & - 3A,’ (ax) 
h& = h&,3 = ‘,‘@A” (2, a/o) [B” (2, a) - 1/sy-l] 

hi& = 31~A~v (ax), hk = hlI = 3/~y-*AA,” (a/x) 
x = KJK’,, a = (1 - y)}v 

The remaining components of the relaxation tensor operators (relative to K,y ) are equal 

to zero. Here y is the thickness of the layer of the first component, relative to the thick- 
ness of the entire layer (periodicity cells). 

We may analogously write out expressions for the creep operators. 
Experiments have been described /2/ for determining the kernels q(t) and qb(t)correspond- 

ing to the operators of (4.1). 
Let us now describe experiments that may be used to determine the kernels corresponding 

to the operators A'@,a)and A," (a). 

*) V.V. Doroglnin, On a solution of spatial static problems of elastic composites, Disserta- 
tion Head to a Conference of the Senior Scientific Candidates in Mathematical Physics, 
MGU, 1980, 112 pp.; M.G. Gadzhiev, 

Moscow, 

Moscow, 1979, Dep. 
Effective elasticity modulus tensor of composite material, 

VINITI, 20.03, No.968-79; cf. also /13/. 
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Let a spring depicted as in Fig.1 has rigidity k. Samples of the first and second com- 
ponents of the composite with ratio between the length and area of the cross-section of f1 and 

fP, respectively, are successively applied to this spring. 
Suppose that the condition 

is observed. 
Then the relation between the force 51 stretching the samples and the displacements u will 

have the form 

1 
Q = b,nl- + bt%” 

from which we may at once determine the operator A,- (a). 

If we consider a more complex system consisting of a parallel connection of a spring of 
rigidity k and system of samples formed by both components connected successively to springs 
of rigidities k, and k, (Fig-Z), then, if the conditions 

are observed, where the quantities bar are determined as above, the relation between the dis- 
placement u and force Q will have the form 

from which the kernel corresponding to the operator A"@,o) may be determined. 
We proceed as follows if we wish to determine an approximate solution of problem (3.1), 

(3.2). If we are able to solve the corresponding elastic problem for an anisotropic medium 
analytically, we will obtain in the solution an expression of the type V (*)S I where S is a 
known quantity, whiletP(*)denotes a function of the elastic anisotropic moduli. Substituting 
for these moduli their expressions in terms of the quantities K,, K,, ml, o, and y, we approx- 
imate cp(Or, 0%) by some analytic expression of the canonical operators. The coefficients of 
this analytic approximation may be found using, for example, the method of least squares /l/. 

If the analytic solution of the corresponding elastic problem is not known, it may be 
found numerically or experimentally, using numerical realizations of the elastic solution /l/. 
For this purpose, we assume that one of the components of the displacement vector (denote it 
by u) has the form 

(4.3) 

Fig.1 Fig.2 
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